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INTRODUCTION

Spectral mixture analysis was applied to AVIRIS data collected over Jasper
Ridge, CA on September 20, 1989. The analysis focused on non-linear spectral mixing
between green vegetation and soils and the separation of non-green vegetation,
vegetation types and soils using linear spectral mixture analysis and residual
analysis (Smith et al.,, 1987; Gillespie et al., 1990; Roberts et al.,, 1990; Sabol et al.,, 1991).

METHODS

The basic linear-spectral mixing model is shown in equation 1.
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Using this equation encoded radiance at band i, DNj, is modeled as the sum of n

laboratory reflectance endmembers, pijj, each weighted by the fraction of the
material in the field of view, fj. Multiplicative and additive factors used to calibrate

encoded radiance to reflectance are shown as gi, and 0j, respectively. €j is a residual
term that accounts for all spectral variability that is not accounted for by mixtures of
the endmembers and the calibration terms.

Our objective when employing linear spectral mixture analysis was to locate
the minimum number of endmembers that described the greatest amount of spectral
variability within the scene. To locate other materials, which were not explicitly
modeled using endmember spectra we analyzed residual spectra (Equation 2):

n
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Residual spectra can be used to identify materials based on wavelength-dependent
positive or negative residuals.

Non-linear spectral mixing occurs when one or more spectra that comprise a
mixture contribute more or less to the mixture than should occur based on the
proportion of materials in the field of view. Non-linear spectral mixing has been
shown to occur between intimate mineral mixtures (e.g. Nash and Conel, 1974;
Johnson et al.,, 1983). Recently it has been shown to also occur between green
vegetation and soils (Roberts et al.,, 1990b, Roberts 1991). Non-linear spectral mixing
between green vegetation and soils is primarily a product of the
transmission/scattering of NIR light by green vegetation. Roberts (1990a), using
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numerical simulations found that a linear mixing model, when applied to mixtures of
green vegetation, soils and shade overestimated the green-leaf fraction and
underestimated the shade fraction. To determine whether non-linear spectral mixing
was significant in AVIRIS data, linear spectral mixing analysis was applied
scparately to three wavelength regions, the visible, near-infrared (NIR) and short-
wave-infrared (SWIR). This approach was used as a test of non-linearity, which
should be expressed as different fractional estimates of green-vegetation and shade
in the visible, NIR and SWIR subsets. Based on the numerical models, we predicted
that the green-leaf fraction estimated from the NIR spectral subset would be higher
than the estimates using the visible spectral subset.

A new method was developed to derive improved estimates of green-leaf and
shade fractions from non-linear spectral mixtures. This approach was based on the
derivation of a canopy shade spectrum (Equation 3).

Sa = (Py, fi*p1a)/fs (3}

Canopy shade, S3, was calculated by subtracting a green-leaf spectrum, pi), weighted
by the fraction of green-leaf, f], from the measured/calibrated encoded radiance
spectrum, Pj, and dividing the difference by the fraction of shade, fg. Using this
approach canopy shade spectra was generated for each combination of green-leaf
and shade fractions. By constraining the spectrum of shade to be near zero in red

. light and positive in the NIR a new set of estimates for green-leaf and shade was
derived.

When a scene contains more endmembers than green-leaf and shade, equation
3 can be genecralized to:

n-1
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RESULTS

The data were calibrated to reflectance using two techniques, an empirical line
calibration (Roberts et al., 1986; Elvidge and Portigal, 1990; Conel, 1990) and the linear
mixing approach (Smith et al., 1987). We found that non-linear spectral mixing between
green vegetation, soils and shade adversely affected the mixing-model calibration
when green vegetation was included as an endmember. In canopies, this non-
linearity was expressed as a canopy shade spectrum that differed from the
photometric (spectrally flat) shade used for calibration. Resulting calibration factors
(ga and o)) derived from the linear-mixing model produced reflectance spectra that
had unreasonably high visible reflectance relative to NIR reflectance (Figure 1).
The empirical line calibration was not affected by non-lincarities only because
vegetation was not employed as a calibration target. Under similar conditions the
mixing model calibration will be comparable.

Most of the spectral variability in the image was described by three reference
spectra (endmembers): green vegetation, soil and shade. Additional endmembers
produced an unstable solution of the mixing equation, degrading the fractional
estimates. Other materials known to occur in the image were located by analysis of
residual spectra (Figure 2). Using this approach we found that senescent grass could
be distinguished from soils based on negative residuals centered at 2100 and 2300 nm.
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Negative residuals at 2100 and 2300 nm resulted from absorption by cellulose and
lignin in the plant material. Residual analysis was also employed to map soils. Four
soils were mapped based on residuals. These included a soil that produced a negative
residual centered at 2207 nm, attributed to clay, one that produced a negative residual
centered at 1042 nm and one that produced negative residuals at wavelengths shorter
than 850 nm (e.g. J9009176 on Figure 2), probably due to ferric iron. The fourth soil
corresponded to the soil endmember in the analysis.

Residual spectra were also found to be highly sensitive to spatial/elevational
variability in atmospheric attenuation and backscattering. Reduced atmospheric
attenuation at higher elevations than the calibration sites was expressed as positive
residuals within the atmospheric water bands (Positive spikes in Figure 2). Increased
atmospheric backscattering was observed on the eastern half of the image.
Atmospheric backscattering did not detract greatly from analysis of the residuals but
did have a severe affect on the linear models of the visible spectral subset.

Linear mixing models of the visible, NIR and SWIR spectral subsets
demonstrated good correspondence with the numerical predictions for non-linearity.
As predicted, green-leaf fractions estimated from the NIR spectral subset were
significantly higher than those estimated from the visible spectral subset. Linear
models of the visible, NIR and SWIR spectral subsets proved to be useful for
distinguishing different types of vegetation, as well as for demonstrating non-linear
spectral mixing. Spectrally distinct vegetation types, which could neither be treated
as separate endmembers nor distinguished using residual spectra, produced different
green-leaf fractions in the three spectral subsets (Figure 3). Two areas were examined
in detail. One of the areas, a golf course, produced high green-leaf fractions in all
three spectral subsets, suggesting that the dominant vegetation in the area has high
visible, high NIR and high SWIR reflectance. This result matches the known spectral
properties of leaves in the area. The other arca, a forested wetland, produced low
green-leaf fractions in the visible and SWIR subsets and high fractions in the NIR
suggesting that the dominant vegetation has low visible and SWIR reflectance and
high NIR reflectance. Once again, the results matched the known spectral properties
of leaves in the area.

Improved estimates of the fraction of green leaf and shade were derived by
solving for canopy shade (Figures 4 and 5). Using this approach new shade estimates
were derived for the the forested wetland (Swamp) and the golf course vegetation
(Lawn), The new estimates for shade were significantly higher than estimates
derived from the linear-mixing model. Furthermore, it was found that the canopy
shade spectrum derived using this approach was related to vegetation types, varying
depending on the transmittance of leaves in the canopy and the architecture of the
canopy.
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Figure 1. Comparison of the empirical line calibration using non-vegetated
targets (two-point - solid) and the mixing model calibration using green vegetation
as an endmember(dashed). Two of the calibration sites, Bright Soil and Swamp are
shown. Note the similarity between the two results at wavelengths beyond 800 nm. At
shorter wavelengths the mixing model calibration produced higher reflectance
values than the empirical line calibration.
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Figure 2. Modeled reflectance spectrum (solid) compared to a measured/
calibrated spectrum for an area dominated by senescent grass located on the central
portion of Jasper Ridge. The modeled spectrum was calculated as the linear sum of
fractions of green-leaf, shade and soil determined for the area using a linear mixing
model. Cellulose and lignin in dry grass produce absorptions in the
measured/calibrated spectrum at 2100 and 2300 nm. When a residual spectrum was
calculated, the presence of these absorptions produced negative residuals. Negative
residuals between 450 and 900 nm are a product of the background soil, which was
spectrally distinct from the soil endmember used in the model. Positive features at
940, 1130 and 1400 nm are a product of reduced almosphcnc attenuation with
increased elevation (Green et al., 1990).
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Figure 3. False color composite showing visible, NIR and SWIR green-leaf
fractions estimated from the spectral subsets as red, green and blue, respectively. The
most obvious feature is a pronounced west (right) to east (left) gradient from blue-
green to red in the image. This gradient is a product of increased atmospheric
backscattering towards the east, which is modeled as increased green-leaf fractions
in the visible model (red). Different vegetation types produced different green-leaf
fractions in the three wavelength regions. Grass in the golf courses appears white in
the middle of the image, towards the top, due to high green-leaf fractions estimated
in all three wavelength regions. Forested wetland (swamp - mid-right) appears
green due to low green-leaf fractions in the visible and SWIR and a high green-leaf
fraction in the NIR. In all cases, green-leaf fractions estimated using the NIR were
higher than they were using visible light [seeslide 4].
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Figure 4. Canopy shade spectra for the forested wetland (Labeled swamp in the
Figure). A reasonable shade spectrum was derived at a shade fraction of 85%. Linear
estimates for this same arca were 56% shade.
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Figure 5. Canopy shade spectra for the golf course grass (Labeled lawn in
figure). Shade fractions from this analysis were 65% compared to an estimate of 18%
using the lincar model. Compare the shade spectrum derived for the grass to the
shade spectrum derived for the forested wetland (Figure 4). Note, shade fractions at
the golf course were lower, yet the NIR "reflectance” of the shade was much higher.
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